Jump to content


Member with a blog
  • Content Count

  • Joined

  • Last visited

  • Days Won


timkingsbury last won the day on April 6

timkingsbury had the most liked content!

About timkingsbury

  • Rank
    Junior Member, just joined the forum !

Contact Methods

  • Yahoo

Profile Information

  • Gender
  • Location
    .AoK HQ - Fertigs Pa or Campbellville Ont
  • Interests
    Everything Mopar, Flatheads and oh of course..Smoking Chevys..
  • My Project Cars


  • Location
  • Interests

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Anything with a date after august 1951 is the best blocks made. A bypass oil filter does a better job of filtering oil, but a full flow starting in 1954 model years will see all the oil passed through a filter. You can drill into a by pass block and put on a full flow on it. Here its done on a 1949 Canadian Plymouth block, which started its life as a 228 and is now 125 thou over bored 265. You can run both a bypass and a full flow if you like. There are 265s with either configuratons that you can consider as durable as anything ever made. All of the Canadian engines after ww2 in the 25 1/2" series are all forged cranks, balanced to 1 gram, forged pistons (from the factory unless ordered by a secondary manufacturer) and balanced assemblies of crank, rods and pistons. You will see lots referring to combines and industrial engines. You can get into engines that are purpose build, maybe with sodium valves and low rev cams. Often industrial engines have cams to meet a specific hp configuration but also a per hour fuel consumption number will have a specialty cam. It is the cam which a lot miss and there are a huge catalogue of cams that were ground for the 25 1/2" engines. The whole topic can be an explosive one and everyone has an opinion. Sadly I find a lot of opinions can be without any experience or expertise behind them. As I have read your posts you talk durability, but then I see the thread going in the supercharger and other directions. I will take a slight tangent here to say, that once you move any engine into a turbo or super charger arena, a cam with a certain number of degrees of separation between when an intake closes and exhausts opens, and visaversa on exhausts closing and intakes opening, become critical if you doing much more than using them as jewelry. By that I mean if your just putting it on with a tiny boost as many have ok.. In those cases I can get way way more power out of a naturally aspirated engine. But if your going to start cranking up pressure, you need separation and no stock cam was ever cam with such seperation. We are happy to provide without charge the specs for at least a couple of cams for superchargers or turbo charges. After that, drop me a note any time.. fargopickupking@yahoo.com and happy to discuss further.
  2. Well you make some interesting observations. On HP your numbers are not quite correct and what was published was for the 265 coming out in 1952 under valued and with a purpose. I have uploaded many times and can send it to you, the 1952 poster which was the start of the 265 and as well the start of dual carbs and factory dual exhaust, but also 241 dodge hemi. The Hemi for what they called the medium tonnage field was primarily municipalities and contractors, dump trucks etc. It w4 ould come out at 133 hp. The 265 for the truck with the truck cam and dual carbs and dual exhaust was 155hp. That not a guess, thats a fact. But marketing said if you say that we will never sell the hemi, so we want it cranked back. At one point the poster was the hemi at 133 and the 6 and 132, but when it hit the dealers in December of 1951 the 6 was tucked into the corner and was shown at 136 hp. Pure marketting. No difference to the 1964 426 hemi being called 425 hp with a single 4 barrel, and in 1966 with a wilder cam, 2 4 barrels it was still 425 hp. That of course was for insurance purposes. In any case I digress. The 265 from the factory with a chrysler car 265 cam in it, was the most hp of the 23 1/2" or 25 1/2" engines. But connecting rods.. You are correct, the shorter the rod the bigger the angle. Now its the balanced crank, rods and pistons that offset your concerns it really does. Think about it.. GM, FORD, you name the manufacturer.. Who else had forged cranks balanced to a gram.. answer no one.. Back to your point.. Let me just say that in the 238/250/265 series engines, they are all exactly the same bore.. 3 7/16" If your having custom made forged pistons made well what you do is take a 238 rod, and raise the pin placement on the pistons. Longer rod and better angle. It doesnt work with a 218 and a 201 is smaller rods bearings so not relevant. The point being on that one point your correct.. long the rod the better.. if.. key word if you not negatively effecting displacement. As so many would tell you, there is no replacement for displacement.
  3. Hi - Well in the 25 1/2" block engines.. the 201 you maybe referring to was moved from USA production to the Windsor Ontario Canada plant when it opened in 1935 for the 1936 model year. that engine was produced for 14 months out of that plant. Among other things you may wish to consider.. The crank has smaller journals, the water jackets, are smaller. the oil galleys are smaller.. It really would be the weakest of all engines ever produced out of the Canadian Plant. When I say that I am quoting my Grandfather who would be the GM of that engine plant when it opened in 1935, reporting directly to Walter Chrysler (and not the VP of production) and he would still be in charged of the engine plant when the very last 25 1/2" engine rolled out of the plant on Nov 11 1959. The 230 was 23 1/2" block so not relevant to the big block discussion, beyond the small block has offset rods. With the 218 and I am assuming your are referring to the Canadian 25 1/2" 218 and not the USA small block 23 1/2" engine that are 217 that are often called 218s. The next generation block would actually be a changed version of the 228 ci motor which started in Windsor in early 1936. That is often referred to as a generation 2 block. Definately better than the 201 engine, but there would be a number of changes to the engine blocks and internal configurations. Even the 1946 250 ci motor has a different block than would a 250 ci motor made after August 1951. It would be that later block which has the best water jackets, best oil circulation, reworking of oil passages and on and on. By that point you could get a 218, 228 or the series of 3 7/16" bore which would be the 238, 250 and 265 ci motors. The difference is the stroke which is accomplished by changing rods, and cranks. 4 1/4" being a 238, 4 1/2" being a 250 and 4 3/4" being a 265. But there is no question the best ever flathead engines ever built are those generations. Among other things and I could give you a laundry list.. Your talking forged cranks balanced to 1 gram, forged pistons, rods, pistons and cranks as an assembly balanced to 1 gram. That never existed with any other flathead engine anywhere in the world. In fact my Grandfather often said - I defy anyone to find a more balanced engine in the planet that came out of my plant. So if stroke becomes where you wish to draw your battle line.. best try with the 238, 250 and 265 motors.. But by 1953 the vast majority of all orders for heavy trucks, commercial vehicles, municipal vehicles, industrial engines, for welders, water pumps, combines, and on and on were 265s. One can point ot military orders of 250s and I would suggest the reduction in price was the factor. They didnt want to pay the extra $. One last one, of total production of any single motor the 265 was produced in a volume larger than any other single motor configuation from the Windsor Engine plant. From 1946 until the end of the flatheads, the Windsor engine plants warranty numbers as a % of production was not only the smallest of any Chrysler engine plant by over 98% but the smallest of any engine plant in North America. The reason was simple.. Build it better, balance it better and you will get less back. Tim Kingsbury
  4. Well after my 7th note from someone I guess I will wade in. I have no idea what Don's picture is or what the story line there is, but here Here is the answer to your question. Yes, every single dual carb dual exhaust manifold that came from the factory was equipped with govenors and balance tubes. You could buy the intake assembly which was the intake and balanced tube, the exhaust maifolds (front or back) as individual assemblies from dealers. Lots of stock car builders would drop the govenors. If you also drop the balance tube as many do, you will find you loose torque and hp. You will gain rpm if you are simply removing the balance tube from the truck engine that it came from the factory with. But and here is the key but, all of those engines that came equipped with the setup and purpose built cams. So you only need to take a cam from a 1952-1953 chrysler and put it into the truck engine to raise the rpm, keeping the torque curve. It actually will develop 8 more hp with nothing more than that cam swap. Again, I am not talking putting in a custom cam or making any other changes, beyond putting in the period car cam into the truck engine. The dual carb/dual exhaust intakes were all produced in Windsor Ontario Canada, and were available at dealers as parts starting in march 1952. I clearly cant speak to all dealerships but can say the Wellington Motors in Guelph Ontario Canada could still get you the dual carb setup in june of 1974. I have a receipt for a complete setup purchased that way.
  5. George Asche can make you one out of your stock intake, You can do it integrated with your exhaust and split them internally and added a second pipe, or do it with headers. In terms of an aftermarket intake, Eddie Edmunds made a decent on and I do see them up for sale from time to time, although they tend to be pricy. The factory dual carb and dual exhaust manifolds that came on the 1952-1956 trucks are also available from time to time, but big time pricy. I know a guy who has a fully restored setup, from carbs to linkage to cross over pipe and dual exhaust but your looking at $3500. The fentons or offy or other low profile intakes I wouldnt touch with a ten foot pole. They loose too much torque. In terms of our AoK plans, we wont be making a dual carb intake. Our triple works so well on everything from a 201, though to the later 238/250/265 series it just doesnt make financial sense for us to develop a dual. Finally sorry for the late reply. I have not been on the forum much this year.
  6. We have had 1950 Plymouths that required nothing, and 1 that required a bit of modification (grinding) on one sport of the cross member. I am not sure if the case of some of the A833 transmissions have slight differences.
  7. You can use any 23 spline (fine spline clutch) from the 1960s and newer. The current one you have is a course spline that was from the 1950s and older. I would use the biggest clutch your pressure plate will take. The last one we put in was for a 1966 dodge cornet rt clutch (10 ½”) and it came with a pressure plate as the one that was in the car was in rough condition. It came from napa and was listed as a clutch pack although there are lots of great and inexpensive options available. If your current pressure plate is in decent shape then likely a 10 1/2" clutch will work fine and they are readily available from all the major part suppliers. I really dont know the width of a jeep cherokee. Here is a handy chart for a lot of the cars which gives you the widths and that is the key for you is making sure you have the track width close. Having the spring widths the same is also a nice thing as it saves more work. In terms of drive shaft its just a case of having the yoke with the finer spline for the transmission and the rear end. So measure your spring widths and your track width and compare them to the jeep. Personally I prefer going to a car version and depending on what your doing engine wise, likely around the 3:55 or 3:73 ratio. One of the mistakes guys do is going to something 3:23 or 2:73 and you suddenly have a dog at lower speeds. So unless your really building a performance engine 3:55 would be as low a number as I would suggest. Hope that helps get you rolling. Tim
  8. Yes they are ... There are some bell housings it does not fit. Primarily the larger trucks. Feel free to drop me a note directly at fargopickupking@yahoo.com as I am not on the site often these days
  9. Ok Folks - For those who would like to see Legendary Plymouth Motorcycle, she is on display at the National Motorcycle museum. http://www.nationalmcmuseum.org/plymouth-monster-and-bonneville-in-1935-one-mans-dream-for-the-worlds-fastest-motorcycle/ Tim
  10. Just thought I would share a picture of fellow Canadian Joe Flynn's cool ride, now running an AoK dual carb intake, linkage and air cleaner setup that I just got.
  11. Howdy Shull - The fact that there is no stamped number of the block likely means at some point in time the block was cracked or could not be bored out any further and someone bought a replacement block. The casting number on the block and the head actually do not really provide you the information one might hope it does. For the year of the block, on the oil filter side of the block, right close to the oil pan and close to the oil filler there will be the date of casting. It was used for internal purposes as blocks became generational items that often were used over several years and several engine sizes. The last generational change for the 25 1/2" Canadian engine was october 1951.At that point the block was carved internally to allow for the 4 3/4" stroke motor for the 265 ci motor, however that block was also used for the 238 and 250 ci motors. Same block same bore for those 3 just different stroke. After 1955 the year was actually dropped as there was no further block generation. So if your block has a month and day but no year code is was cast after Jan 1955. So your back to the strokes using the method BobK outlined will tell you if it happened to be a 238 (4 1/4" stroke) 250 ( 4 1/2" stroke) and 265 ( 4 3/4" stroke) although you could also have a 228 ci motor or several other cubic inches with a spitfire head on it. As well while the 238, 250 and 265 are 3 7/16" bore stock you would have to remove the head to know for sure the cubic inch. I would however do as BobK suggested as a start. Pull the brass plug and measure the stroke. That really narrows things down quickly. Tim
  12. Sadly this is an idea that may work with other engines, but it most certainly does not work with the flathead. We have done extensive tests. Shortly I will do a complete blog entry on it. But the short version is that when an engine 1st starts up the temperature of the water/antifreeze is the outside air temperature. I dont want to get into a big technical arguement as I know at minus 46 degrees the antifreeze isnt minus 46 so save the comment. Are the water is moved by this plate at start up you are actually drawing heat away from the intake. Heat that even with the split i the exhaust is naturally coming from the exhaust and hitting the intake. Now headers made from stock exhaust actually have a closer profile to the intake than does say fentons, so there is more heat coming from them. But with the water heat attached you have no positive effect until the engine has actually reached close to or reached operating temperature. My then you dont need it. Prior to that point you are actually drawing temperature away from the intake. I can say that with absolute certainty. I have tested it at multiple temperature ranges. Just like I have with the couple of generations of edmunds that offered water heating. So save your time and money. It doesnt work as one might expect and the icing of carbs, Ive heard this story many times and have see many cars do it, but none where flathead mopars until we are talking very cold temperatures which there are some on the forum that drive in them. Absolutely no doubt about that. In that case split your exhaust internally and leave it connected to the intake.
  13. Well here is the wiring diagram (courtesy of George Asche. Yes bypassing the circuit certainly tells you whether that was an issue. The electronic ignition by itself really doesnt have anything to do with anything assuming everything is wired correctly. Ill drop you a pm.
  14. Here is what we use in every vintage overdrive transmission (R6, R7 , R10G1) and every straight vintage 3 speed, 4 speed and yes even the 5 speeds in our heavy 1952-1956 Dodge trucks. We have trannys with over 100,000 miles on them using it, as would the recognized expert in vintage trannys George Asche. He has taken apart a tranny with tens of thousands of miles on it using Fuel Synthetic oil that yes is really designed for Diesel engines and the internals were perfect.
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Terms of Use